Cyril Stanley Smith— 1982 Pomerance Award for Scientific Contributions to Archaeology

Award Citation:

In his Introduction to the catalog of the exhibition From Art to Science: Seventy-Two Objects Illustrating the Nature of Discovery, Cyril Stanley Smith describes the objects he selected for the exhibit as "simultaneously material, individual, and social products. On the same scale as the human body, they mark the precise point at which the structure and behavior of matter … interact with the structure and behavior of human thought and institutions." In honoring Cyril Stanley Smith with the Pomerance Award for Scientific Contributions to Archaeology we acknowledge the creative and perceptive ways in which he has brought his great knowledge of the science of materials to bear upon the products of human interaction with materials, especially those products that constitute the material culture of the societies of prehistory.

Cyril Smith would describe himself as a metallurgist, but a review of his prodigious publications that began in 1925 reveals the history of his rich and ever changing involvement with metallurgy, his use of the discipline to afford him insights as much into the nature of ancient society as into the nature of poly crystalline aggregates. During his early years of research in the metals industry ( 1927 -1942), followed during the Second World War by his term as director of metallurgical research at the Los Alamos Scientific Laboratory (1943-1946), and finally during his founding and direction of the Institute for the Study of Metals at the University of Chicago (1946-1961), Smith's studies focused on the physical nature of metals and the role of interface energy and topology in the structure of polycrystalline materials. But as early as 1942 he had already edited and published the first in a series of what have become the classics in the history of metallurgy, a corpus of primary sources that ultimately included seven treatises ranging from the ninth through the eighteenth centuries: the Mappae Clavicula [9th C.], the Bergwerk und Probierbuchlein [1533], Biringuccio's Pirotechnia [1540], and Lazurus Ercker's Treatise on Ores and Assaying [1574] are among these.

Cyril Smith's most provocative and dramatic contributions to the history of metallurgy, however, lie in his interpretations of its prehistory, revealed through laboratory examination of the microstructures of metal artifacts which he has studied from all parts of the globe, particularly from the Near East, Europe, and the Orient. When he left Chicago in 1961 to join the MIT faculty as Institute Professor, with a joint appointment in the Departments of Humanities and Materials Science and Engineering, that unique appointment reflected his commitment to exploring the technologies of prehistoric societies through the laboratory study of their material manufactures, especially of the products of their metallurgical activities whether those be the ores, furnaces, and slag piles of archaeological sites or the metal artifacts that constitute museum collections. A large segment of Smith's publications since 1961 reports the results both of his field research surrounding ancient metallurgical industries—he accompanied Theodore Wertime on metallurgical reconnaissance trips to Iran in 1962 and 1966—and his laboratory studies of metal artifacts whose technological histories are locked within their very structures.

Smith's first publication revealing the power of metallographic analysis to unlock the processing history behind a metal artifact and, thereby, to illuminate the prehistoric metallurgical technologies that produced such objects, was a 1949 article with Marie Farnsworth on a sample of metallic zinc from ancient Athens. Since that early collaboration he has developed the methodology as its foremost practitioner, with pioneering contributions particularly to the early metallurgies of Persia and Japan. Smith's "The Interpretation of Microstructures of Metallic Artifacts" in the 1967 volume of Applications of Science in Examinations of Works of Art remains the model for all future work in the field of analysis and provides one of the earliest discussions of themes he developed increasingly thereafter—that objects can reveal information not recorded in words, that people's earliest experimentation with the materials of their physical environment was aesthetically motivated, as we witness in a broad range of archaeological artifacts, and that objects are the physical manifestations of the hand, the mind, and the eye working together. These insights and his research based upon them have led him to see, for the future, "the greatest need and the greatest opportunity in the development of nonverbal sources for history and of methods for their interpretation."

Cyril Stanley Smith was not the first to point to the rich stores of technological and, therefore of social information held within preserved objects of prehistory and capable of being interpreted through laboratory analysis. But, as a fellow historian of technology has said of him, he has dramatized the opportunity. He is one of the very few scholars capable of studying archaeological objects at the various hierarchical levels at which they exist—at the polycrystalline level of the metal from which the object is fashioned, at the level of the unique artifact itself and at the level of the artifact as a social product. He has placed the artifact—the fundamental unit of archaeological investigation—at center stage; not as the static end product of complex technological procedures but as the dynamic recorder and transmitter of information about those procedures. And he has provided us with the laboratory analytical tools by which to read that information. In so doing, Cyril Smith has helped establish a new and primary method of interpretive analysis for archaeology—what might be called the materials science of archaeological materials. That new interpretative style has provided a window on prehistory that has revolutionized the pursuit of the science of archaeology.

Dig Deeper

Email the AIA Facebook Instagram YouTube Twitter
Subscribe to the AIA e-Update

Sign Up!