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Abstract: Human skeletal remains are routinely used to examine cultural and biological aspects of past
populations. Yet, archaeological specimens are frequently fragmented/incomplete and so excluded from
analyses. This leads to decreased sample sizes and to potentially biased results. Digital methods are now
frequently used to restore/estimate the original morphology of fragmented/incomplete specimens. Such
methods include 3D digitisation and Geometric Morphometrics (GM). The latter is also a solidly established
method now to examine morphology. In this study, we use GM-based methods to estimate the original
morphology of incomplete Mesolithic and Chalcolithic mandibles originating from present Portugal and
perform ensuingmorphological analyses. Because mandibular morphology is known to relate to population
history and diet, we hypothesised the two samples would differ. Thirty-seven specimens (12 complete and
25 incomplete) were CT-scanned and landmarked. Originally complete specimens were used as reference to
estimate the location of absent anatomical landmarks in incomplete specimens. As predicted, our results
show shape differences between the two samples which are likely due to the compounded effect of con-
trasting population histories and diets.

Keywords: biological anthropology, virtual anthropology, skeletal morphology, population history, bone
adaptation

1 Introduction

Human skeletal remains are used routinely to examine various cultural and palaeobiological aspects of past
populations, including, e.g., funerary behaviour (Filipe, Godinho, Granja, Ribeiro, & Valera, 2013; Godinho,
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Gonçalves, & Valera, 2019), diet (Galland, Van Gerven, Von Cramon-Taubadel, & Pinhasi, 2016; Pokhojaev,
Avni, Sella-Tunis, Sarig, & May, 2019; von Cramon-Taubadel, 2011), occupation (Henderson, 2013; Villotte
et al., 2010; Villotte, Churchill, Dutour, & Henry-Gambier, 2010), mobility (Holt, 2003; Macintosh, Pinhasi, &
Stock, 2014; Ruff et al., 2015), biological distances (Brewster, Meiklejohn, von Cramon-Taubadel, &
Pinhasi, 2014; Nystrom & Malcom, 2010; Stojanowski & Schillaci, 2006), and palaeopathology (Calce,
Kurki, Weston, & Gould, 2018; Godinho, Santos, & Valera, 2020; Griffin & Donlon, 2009). Yet, archae-
ological specimens are frequently fragmented, incomplete, and/or distorted, and so are often excluded
from analyses (Godinho & O’Higgins, 2017; Gunz, Mitteroecker, Neubauer, Weber, & Bookstein, 2009;
O’Higgins, Fitton, & Godinho, 2019). This leads to reduced sample sizes and hence, potentially biased
results when examining past populations (Cardini & Elton, 2007; Cardini, Seetah, & Barker, 2015). To
overcome such limitations, researchers frequently reconstruct incomplete specimens by estimating the
original location of missing regions and include those specimens in the analyses to increase sample size.
While reconstruction has frequently been based on individual expertise and morphological visual assess-
ment, it is now commonly based on digital methods that allow more objective and reproducible approaches
(Amano et al., 2015; Bauer & Harvati, 2015; Benazzi, Bookstein, Strait, & Weber, 2011; Godinho & O’Higgins,
2017). Such methods include 3D digitisation and Geometric Morphometrics (GM), which allow geometric- and
statistical-technique-based digital reconstructions that are fully reproducible and so overcome the subjec-
tivity of previous reconstruction methods (Gunz et al., 2009; O’Higgins et al., 2019). Moreover, GM also
enables complex morphological analyses and examination of how form relates to other underlying variables
(O’Higgins, 2000; Zelditch, Swiderski, Sheets, & Fink, 2012).

Here we use GM to reconstruct incomplete Mesolithic and Chalcolithic mandibles (from present
Portugal) to increase sample size. The Mesolithic specimens originate from several Muge (Cabeço da
Amoreira, Cabeço da Arruda, Cova da Onça, and Moita do Sebastião) and Sado (Arapouco, Cabeço de
Pez, and Vale de Romeiras) shell middens and the Chalcolithic specimens from 2 distinct archaeological
sites (Monte da Guarita 2 and Monte do Carrascal 2; Table 1 and Figure 1). The generally contemporaneous
Muge shell middens are located in the Tagus valley and form one of the most important Mesolithic contexts
worldwide (Bicho et al., 2013; Bicho, Umbelino, Detry, & Pereira, 2010; Gonçalves, 2009; Gonçalves, Cas-
calheira, & Bicho, 2014). They were formed by early Holocene hunter–gatherers and over 300 individuals
were buried therein (Cunha & Cardoso, 2001; Jackes & Lubell, 1999; Peyroteo-Stjerna, 2020; Umbelino et al.,
2015). The Sado complex also includes multiple middens and is located ∼100 km south of the Muge complex
(Araújo, 2003; Cunha & Umbelino, 2001), and from which over 100 individuals (generally coeval with those
from the Muge shell middens)were excavated (Cunha & Umbelino, 2001; Peyroteo-Stjerna, 2020; Umbelino,
2006). Monte da Guarita 2 is located in Alentejo and corresponds to a Chalcolithic collective underground
tomb (hypogeum) from where several individuals were exhumed (Miguel & Simão, 2017). Monte do Car-
rascal 2 is an archaeological complex including several Chalcolithic collective hypogea from which several
individuals were exhumed (Valera, Santos, Figueiredo, & Granja, 2014). After reconstruction of the sam-
ples, we further used GM to perform ensuing morphological analyses of the samples and examine if
Mesolithic specimens are morphologically distinct from Chalcolithic mandibles. Because mandibular

Table 1: Inventory of complete and incomplete specimens (per site and chronology) used in this study

Site Chronology Complete specimens Incomplete specimens Total specimens

Arapouco Mesolithic 1 1 2
Cabeço da Amoreira Mesolithic 0 1 1
Cabeço da Arruda Mesolithic 2 4 6
Cabeço de Pez Mesolithic 0 1 1
Cova da Onça Mesolithic 1 0 1
Moita do Sebastião Mesolithic 5 8 13
Vale de Romeiras Mesolithic 1 1 2
Monte da Guarita 2 Chalcolithic 2 4 6
Monte do Carrascal 2 Chalcolithic 0 5 5
Total 12 25 37
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morphology is impacted by population history (Buck & Vidarsdottir, 2004; Katz, Grote, & Weaver, 2017;
Mounier et al., 2018) and masticatory mechanics (Galland et al., 2016; von Cramon-Taubadel, 2011), and
based on previous research (given below), we hypothesised that specimens from these two periods are
morphologically distinct.

Specifically, the Mesolithic hunter–gatherer mode of subsistence was replaced by Neolithic agro-pas-
toralism, which was introduced in Iberia in ∼5500 cal. BC by populations originating in the Middle East
(Martins et al., 2015; Zilhão, 2000, 2001). This change in mode of subsistence is associated with marked
genetic discontinuity between Iberian Mesolithic and Neolithic populations and substantial replacement of
the former by the latter, despite some degree of population admixture (Haak et al., 2015; Olalde et al.,
2015, 2019; Villalba-Mouco et al., 2019). Moreover, bone adapts to various aspects of mechanical loading
(Currey, 2006; Judex & Rubin, 2010; Judex, Gross, & Zernicke, 1997; Judex, Lei, Han, & Rubin, 2007; Lanyon
& Rubin, 1984; Lanyon, 1984; Mosley & Lanyon, 1998; Mosley, March, Lynch, & Lanyon, 1997; Turner, 1998)
and so several previous studies have demonstrated that the dietary changes that occurred in the Meso-
lithic –Neolithic transition impacted mandibular morphology (Galland et al., 2016; Pokhojaev et al., 2019;
von Cramon-Taubadel, 2011). Thus, we hypothesise that Mesolithic and Chalcolithic mandibular mor-
phology of the samples used in this study differ because it is impacted by both population history and diet.

2 Materials and Methods

This study is based on a total of 37 Mesolithic and Chalcolithic specimens originating from several sites
located in the present Portugal (Table 1 and Figure 1).

All specimens were digitised using a Toshiba Astelion CT scanner (120 kV, voxel size 0.348 × 0.348 × 0.3,
revolution time 0.75 s, spiral pitch factor 0.94) at the Faculty of Veterinary Medicine of the University of

Figure 1: Location of the archaeological sites from which the specimens used in this study were recovered. (a) Overall location
of sites within Iberia. (b) Cluster location of the Muge shell-middens and individual location of the remaining sites. (c) Individual
location of each of the Muge sites.
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Lisbon. Segmentation ensued in 3D Slicer (Fedorov et al., 2012) using standard protocols described by
Godinho and O’Higgins (2017, 2018), Godinho, Spikins, and O’Higgins (2018) and Godinho et al. (2018).
Fragmented specimens were virtually pieced together (Godinho & Gonçalves, 2020). After this procedure,
coordinates were extracted from a total of 21 anatomical landmarks (LMs; Table 2) from the most complete
hemi-mandible of each specimen to capture mandibular morphology (Figure 2). The use of left hemi-
mandibles was favoured. When specimens were incomplete, the location of the missing LMs was estimated
using the thin plate spline (TPS) function of the Geomorph R package following the recommendations of
Godinho, O’Higgins, and Gonçalves (2020). Specifically, excessively incomplete specimens were not recon-
structed because reconstruction error may be larger than inter-individual differences and hence may lead to
biased results. This led to the exclusion of specimens missing more than 5 LMs. Only 1 specimen with 5
missing LMs was included and incomplete specimens most often lacked 2 LMs (Table A1). Mesolithic speci-
mens were used as reference to geometrically estimate the location of the missing landmarks in the incom-
plete Mesolithic specimens. The same procedure was applied to the Chalcolithic sample using complete
Chalcolithic specimens. Thus, chronological specific references were used. This is because the use of inap-
propriate references (i.e., specimens with meaningful morphological differences due to, e.g., contrasting
population history) leads to larger errors in the estimation of the location of missing anatomical regions
(Gunz et al., 2009; Neeser, Ackermann, & Gain, 2009; Senck, Bookstein, Benazzi, Kastner, & Weber, 2015).
Nevertheless, we tested if this population-specific reconstruction approach could be driving the hypothetical
inter-population differences. To that end, a non-population specific reference was created using all complete
specimens from both chronologies for ensuing reconstruction of incomplete specimens. Results from both
reconstruction approaches were then compared using Principal Component Analysis (PCA) and Discriminant
Function Analysis (DFA) (given below).

After estimation of the missing LMs, standard GM analysis ensued. The landmark coordinate datasets of
all specimens were superimposed using Generalised Procrustes Analysis (GPA). GPA removes the effects of
size, location, and orientation and produces shape variables that are used in shape analysis. Shape differ-
ences between samples were examined via the PCA and visualised using Thin Plate Splines (TPS) that
depict shape differences along the selected PCs. The impact of reconstruction approach was examined by

Table 2: Mandibular landmarks used in this study

# Landmark name Landmark description

1 Gnathion Midline of the inferior border of the mandible
2 Infradentale Anterior alveolar ridge, between anterior incisors
3 Linguale Genial tubercle: in case of a single tubercle, on its tip; in case of two, midpoint

between them
4 Orale, mandible Posterior alveolar ridge between the anterior incisors
5 Pogonion Most anterior point of mandibular symphysis
6 C-P3 Anterior alveolar ridge between canine and first premolar
7 P4-M1 Anterior alveolar ridge between second premolar and first molar
8 M1-M2 Anterior alveolar ridge between first and second molar teeth
9 Mental foramen anterior Anterior point of mental foramen
10 Ramus root Anterior rim of the ramus (placed on the level of the alveolar ridge)
11 Gonion A point on the projection of the bisection of the mandibular angle
12 Condyle, lateral From a superior view, the lateral point on the condyle
13 Condyle, midpoint From a superior view, a point in the centre of the condyle
14 Condyle, medial From a superior view, the medial point on the condyle
15 Sigmoid Notch The lowest point of the mandibular notch, with the mandible in the mandibular plane

and in lateral view
16 Coronoid process Tip of the coronoid process
17 Mandibular foramen, inferior Most inferior point of the mandibular foramen
18 Alveolous, lingual posterior From a superior view, the most posterior point on the lingual alveolar process
19 Condyle, anterior A point on the antero-superior aspect of the mandibular notch (on the condyle)
20 Condyle, posterior The centre of the condyle from a posterior view
21 Ramus, posterior Posteriormost point of the ramus that is in line with the ramus root

Mesolithic and Chalcolithic Mandibular Morphology  539



performing a PCA in which all specimens from the population-specific and non-population-specific reconstruc-
tions were included. DFA with 10,000 permutations and cross-validation scores was also used to examine the
inter-population differences and was implemented using MorphoJ (Klingenberg, 2011). DFA was also used to
examine the impact of population-specific vs non-population-specific reconstruction approaches (given above).

To examine if hypothetical morphological differences between Mesolithic and Chalcolithic samples are
most likely related to population history or masticatory mechanics (given above), dental wear was also
examined because it is related to the latter (Chattah & Smith, 2006; Smith, 1984). Wear magnitude was
scored according to Smith (1984), averaged per individual and compared between the two samples using a
boxplot and the Wilcoxon non-parametric statistical test.

3 Results

Digitisation and the use of GM-based reconstruction allowed estimating the original morphology of 25
originally incomplete specimens, thereby, increasing the sample size from 12 to 37 specimens.

Ensuing morphological analysis including all specimens shows limited overlap between the two sam-
ples (when plotting PC1 and 2, which explain ∼34% of the total variance; Figure 3). This is because the
Mesolithic sample clusters mostly along the positive values of PC2 and the Chalcolithic sample mostly
clusters along the negative values. Morphologically, this corresponds to Chalcolithic specimens having,
e.g., generally wider rami, taller coronoid processes, shorter mandibular symphyses, and more alveolar
prognathism. Although there is overlap between the two samples in PC1, the most extreme positive speci-
mens are Chalcolithic. Such specimens have, e.g., shorter mandibular symphyses, more flexure of the
posterior border of the ramus and more anteriorly positioned coronoid processes. PCA comparison of full

Figure 2: Visualisation of CT scan slices (a), ensued by rendering (b), and landmarking of individual specimens (c). Note that C
shows the location of present and estimated missing (e.g., in the coronoid process) landmarks.
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samples including population- and non-population-specific reconstruction approaches show meaningful
overlap between specimens and very little impact on the overlap between groups (Figure A1). DFA is unable
to reliably discriminate between population- and non-population-specific reconstructions of the same
populations, and discriminates similarly between Mesolithic and Chalcolithic specimens based on the
two different reconstruction approaches (Tables A2–A7). This shows inter-population differences are not
due to reconstruction approach.

DFA using 10,000 permutations shows significant inter-group differences (T-Square: p < 0.0001).
Nevertheless, cross-validation results show misclassification of 4/11 Chalcolithic and 2/26 Mesolithic speci-
mens (Table 3).

Dental wear magnitude is significantly heavier in the Mesolithic sample (Figure 4).

4 Discussion

The use of digital methods enabled the objective and reproducible reconstruction of 25 specimens that were
originally incomplete. Thus, sample size was increased to a total of 37 specimens, which enabled further
GM-based morphological analysis, a better representation of morphological variance, and hence more
reliable results than if only the 12 originally complete specimens were included.

As expected, morphological analyses show shape differences between the Mesolithic and Chalcolithic
samples. Our results also show negligible differences between population-specific and non-population-
specific reconstructions. Thus, contrasting shapes between the two populations are not related to the
reconstruction approach. Because mandibular morphology is known to relate to both population history
(Buck & Vidarsdottir, 2004; Katz et al., 2017; Mounier et al., 2018) and masticatory mechanics (Galland
et al., 2016; Katz et al., 2017; May, Sella-Tunis, Pokhojaev, Peled, & Sarig, 2018; Pokhojaev et al., 2019;
von Cramon-Taubadel, 2011), these shape differences may relate to either of these two underlying factors.

Specifically, Iberian Mesolithic populations derived from previously existing Post-Glacial Upper
Palaeolithic populations (Brewster et al., 2014; López-Onaindia, Gibaja, & Subirà, 2019). By no later than
∼5500 cal. BC, populations originating in the Middle East reached the Iberian Peninsula and introduced

Figure 3: PCA of shape variation of Mesolithic hunter–gatherer and Chalcolithic agro-pastoralist mandibles.

Table 3: Cross-validation scores of DFA (with 10,000 permutations)

Allocated to

True group Chalcolithic Mesolithic Total

Chalcolithic 7 4 11
Mesolithic 2 24 26
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agriculture (Martins et al., 2015; Zilhão, 2000, 2001). Ancient DNA studies show marked genetic disconti-
nuity between Mesolithic hunter–gatherers and Neolithic agro-pastoralists, thus suggesting population
replacement mainly in most European regions. However, such studies also show the presence of Mesolithic
DNA in post-Mesolithic individuals and so at least some level of admixture exists between the local
Mesolithic and the incoming Neolithic populations (Haak et al., 2015; Olalde et al., 2015, 2019; Villalba-
Mouco et al., 2019). Because mandibular morphology is known to relate to population history (Buck &
Vidarsdottir, 2004; Katz et al., 2017; Mounier et al., 2018), our results showing shape differences between
the two samples are to be expected and likely also related to population history.

Despite contrasts in mandibular shape being likely related to differences in population history in the
samples, masticatory mechanics has also probably impacted mandibular morphology to some extent. The
Mesolithic hunter–gatherer diet has been consistently said to be mechanically more demanding than the
post-Mesolithic agro-pastoralist diet (Cohen, 1989; Larsen, 1997, 2006; Stock & Pinhasi, 2011). This is
because the latter includedmore processed food items thatmade the overall diet softer and so less demanding
(Cohen, 1989; Larsen, 1997, 2006; Stock & Pinhasi, 2011). Previous experimental studies using non-human
mammal models have shown that differences in the material properties of diet impact skull morphology
(Beecher & Corruccini, 1981; Bouvier & Hylander, 1984; He & Kiliaridis, 2003; Kiliaridis, Engström, & Thi-
lander, 1985; Menegaz & Ravosa, 2017; Menegaz, Sublett, Figueroa, Hoffman, & Ravosa, 2009; Ravosa,
Kunwar, Stock, & Stack, 2007; Ravosa et al., 2008a,b), and so differences in skull form between hunter–-
gatherers and agro-pastoralists are frequently linked to differences in the masticatory demands due to dietary
differences (Galland et al., 2016; Katz et al., 2017; May et al., 2018; Pokhojaev et al., 2019; von Cramon-
Taubadel, 2011). Our results showing significantly heavier wear in Mesolithic specimens are consistent
with previous studies (Larsen, 1997; Lukacs, 1989) and support the hypothesis that mandibular shape differ-
ences between the two samples are also related to differences in diet and therefore in masticatory demands.
This is because dental wear is known to relate to the material properties of food, and so it is frequently used to
examine differences in diet and food pre-processing (Chattah & Smith, 2006; Smith, 1984).

In summary, our results confirm our prediction that mandibular morphology differs between Mesolithic
hunter–gatherers and Chalcolithic agro-pastoralists. This is probably due to the compounded effect of
population history and masticatory mechanics. Although we are unable to discern which of these factors
impacted morphology the most, previous research about limb skeletal morphology showed that differences
in mechanical loading fail to erase the impact of population history in bone form (Agostini, Holt Brigitte, &
Relethford John, 2018). This is consistent with previous studies showing that mandibular morphology is
impacted more by population history than by masticatory mechanics (Katz et al., 2017), and so the man-
dibular morphological differences detected in this study are most likely related to population history and,
possibly, enhanced by contrasting masticatory demands.

Wilcoxon, p = 0.023
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Figure 4: Dental wear magnitude (scored according to Smith, 1984) of the Mesolithic and Chalcolithic samples.
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Abbreviations

DFA discriminant function analysis
GPA generalised procrustes analysis
GM geometric morphometric
LM landmarks
PCA principal component analysis
TPS thin plate spline
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Appendix

Table A1: Number of missing landmarks per specimen in the Mesolithic and Chalcolithic samples

Number of missing landmarks Mesolithic Chalcolithic Total %

0 10 2 12 32.43
1 4 1 5 13.51
2 6 3 9 24.32
3 3 2 5 13.51
4 3 2 5 13.51
5 0 1 1 2.70
Total 26 11 37 100.00

Table A2: DFA with cross-validation of the non-population-specific reconstructed Chalcolithic sample vs the population-
specific reconstructed Chalcolithic sample (see details about reconstruction parameters in Materials and Methods)

Allocated to

True group Chalcolithic (non-population specific) Chalcolithic (population specific)Total

From discriminant function
Chalcolithic (non-population specific)

11 0
11

Chalcolithic (population specific)
2 9

11

From cross-validation
Chalcolithic (non-population specific)

5 6 11
Chalcolithic (population specific)

6 5 11

Table A3: DFA with cross-validation of the non-population-specific reconstructed Chalcolithic sample vs the non-population-
specific reconstructed Mesolithic sample (see details about reconstruction parameters in Materials and Methods)

Allocated to

True group Chalcolithic (non-population
specific)

Mesolithic (non-population
specific)

Total

From discriminant function
Chalcolithic (non-population
specific)

11 0 11

Mesolithic (non-population specific) 0 26 26
From cross-validation
Chalcolithic (non-population
specific)

8 3 11

Mesolithic (non-population specific) 2 24 26
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Table A4: DFA with cross-validation of the non-population-specific reconstructed Chalcolithic sample vs the population-
specific reconstructed Mesolithic sample (see details about reconstruction parameters in Materials and Methods)

Allocated to

True group Chalcolithic (non-population specific) Mesolithic (population specific) Total

From discriminant function
Chalcolithic (non-population specific) 11 0 11
Mesolithic (population-specific) 0 26 26
From cross-validation
Chalcolithic (non-population specific) 8 3 11
Mesolithic (population-specific) 1 25 26

Table A5: DFA with cross-validation of the population-specific reconstructed Chalcolithic sample vs the non-population-
specific reconstructed Mesolithic sample (see details about reconstruction parameters in Materials and Methods)

Allocated to

True group Chalcolithic (population specific) Mesolithic (non-population specific) Total

From discriminant function
Chalcolithic (population specific) 11 0 11
Mesolithic (non-population specific) 0 26 26
From cross-validation
Chalcolithic (population specific) 7 4 11
Mesolithic (non-population specific) 1 25 26

Table A6: DFA with cross-validation of the population-specific reconstructed Chalcolithic sample vs the population-specific
reconstructed Mesolithic sample (see details about reconstruction parameters in Materials and methods)

Allocated to

True group Chalcolithic (population specific) Mesolithic (population specific) Total

From discriminant function
Chalcolithic (population specific) 11 0 11
Mesolithic (population specific) 0 26 26
From cross-validation
Chalcolithic (population specific) 7 4 11
Mesolithic (population specific) 2 24 26

Table A7: DFA with cross-validation of the non-population-specific reconstructed Mesolithic sample vs the population-specific
reconstructed Mesolithic sample (see details about reconstruction parameters in Materials and Methods)

Allocated to

True group Mesolithic (non-population specific) Mesolithic (population specific) Total

From discriminant function
Mesolithic (non-population specific) 22 4 26
Mesolithic (population specific) 6 20 26
From cross-validation
Mesolithic (non-population specific) 7 19 26
Mesolithic (population specific) 17 9 26
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Figure A1: Shape PCA comparing population-specific and non-population-specific reconstruction of incomplete specimens.
Note there is complete or almost complete overlap between specimens despite differences in reconstruction method.
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